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1 Introduction

Here, I would like to discuss the problem of minimizing the LCM of a sequence
of k distinct integers given their exact sum to be n. This value I will denote
as LK(N). I will establish a lower and an upper bound on this value for any
n, k ∈ N. The lower bound, as you will see, is extremely simple to establish; a
far more complex problem is establishing an upper bound.

Theorem 1. Lk(n) ≥ n/
(
1
1 + 1

2 + . . .+ 1
k

)
Consider the following problem, listed in the shortlist for IMO 2022, as an

example of where this function has been used.

Question 1. A number is called Norwegian if it has three distinct positive
divisors whose sum is equal to 2022. Determine the smallest Norwegian number.
(Note: The total number of positive divisors of a Norwegian number is allowed
to be larger than 3.)

This problem is equivalent to calculating the exact value of L3(2022), it is
specifically this problem, which convinced me to generalize the concept.

2 Lower Bound

Here, I will prove that the lower bound on the value of Lk(n) is n/
(
1
1 + 1

2 + . . .+ 1
k

)
,

along with the fact that this bound is tight.

Theorem 2. Lk(n) ≥ n/
(
1
1 + 1

2 + . . .+ 1
k

)
Proof. Let us assume the opposite, that indeed, Lk(n) < n/

(
1
1 + 1

2 + . . .+ 1
k

)
,

then let Lk(n)/a1 < Lk(n)/a2 < . . . < Lk(n)/ak be the k divisors of Lk(n)
(meaning, the k divisors, which sum to n, from the definition), then we conclude,
that,

n =

k∑
i=1

Lk(n)

ai
= Lk(n)

(
1

a1
+

1

a2
+ . . .+

1

ak

)
<

n
1
1 + 1

2 + . . .+ 1
k

(
1

a1
+

1

a2
+ . . .+

1

ak

)
(1)
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However, as one can probably already see, 1
a1

+ 1
a2

+. . .+ 1
ak

≤ 1
1+

1
2+

1
3+. . .+ 1

k ,
however even if this sum equals its maximum possible value the last expression
will only be n, thus it is impossible for there to be a strict less sign in the
inequality, contradiction. Thus, the inequality is indeed true. ■

Notice that the lower bound on Lk(n) gives something more interesting.
Obviously one can see that from this, one can conclude that,

[a1, a2, . . . , ak] ≥
1

1
1 + 1

2 + . . .+ 1
k

k∑
i=1

ai (2)

is true for any a1, . . . , ak ∈ N, assuming that for no two ai, aj we have ai = aj .
As a small example of the two equations, we get the following nice simple tricks,
(given, that a ̸= b)

[a, b] ≥ 2

3
(a+ b) (3)

(a, b) =
ab

[a, b]
≤ 2ab

3(a+ b)
(4)

This is a direct consequence, of the lower bound of L2(N), which is L2(N) ≤ 2
3N .

3 Upper Bound

3.1 L2(N) Analysis

Let us try to calculate the precise value of L2(N).

Theorem 3. Given n ∈ N, that n ≥ 3, the value of L2(N) is (q − 1)r, where q
is the smallest divisor of N greater than 2 (this is achieved by the partitioning,
n
q , n− n

q ).

Proof. Let us assume this is not the case, then it must hold, that, the partition
of n was into two parts xd and yd, where x, y > 1, and d is the greatest common
denominator of the two numbers in the partition (consequently (x, y) = 1).
Notice, that [xd, yd] = d[x, y], however, due to (x, y) = 1, one can conclude that
[x, y] = xy, thus [xd, yd] = xyd. However, notice, that xy is minimized, when
x = 2 and y = n

d − 2, but notice that even then,

dxy = 2d

(
n

d
− 2

)
= 2(n− d) (5)

However, notice, that, if one considers the partition where x = 1 and y =
n
d − 1, then the least common multiple will be the following,

dxy = d

(
n

d
− 1

)
= n− d (6)
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Which is better, than than 2(n−d), consequently, it is always benificial to make
the partition of the form d, dx, thus, to minimize the least common denominator,
the value of dx, must be minimized, in other words the value of n

d − 1 must be
minimized, however this problem is equivelent to maximizing d (note, that the
maximized value of d is represented as r in the statement). However, to simplify
the statement, notice that maximizing d means minimizing n

d , however
n
d ≥ 3

must hold, for the partitioning to be legal (e.i. the numbers would be distinct),
consequently, one sees, that if q is the smallest divisor, such that q ≥ 3, the
value of L2(N) is exactly (q − 1)r. ■

Notice, that trivially (through simply considering the partitioning 1, n −
1), L2(N) is at least bounded by N − 1, however through this theorem, we
understand that this bound is tight for prime values of N , thus proving, that
indeed, the upper bound N − 1 is tight.

While this does indeed already tell us a lot, the function is bounded by two
linear functions, consequently L2(N) = O(N), however this does not tell the
full story, the question that I will raise in this section, will be to find a function
L̂2(N), such that, [ N∑

k=1

L2(k)

]
/N =

[ N∑
k=1

L̂2(k)

]
/N (7)

In simple terms, a nice approximation of L2(N) in the form of a linear function,

L̂2(N). To start the analysis, I will perform a common trick, notice, that L2(N)
from the previous theorem is a very hard function to work with, consequently to
eliminate any drastic changes in the value of the function, I propose analysing
the value of the following,

AL2(N) =

[ N∑
k=1

L2(k)

]
/N (8)

Notice, that the problem of identifing the smallest divisor greater than 2, is
not extremely different from identifying the smallest prime divisor, this is due
to the fact, that the smallest divisor greater than 2, must be part of the set
{4, 3, 5, 7, . . .} (in other words, the union of {4} and the set of primes, greater
than 2) let πn represent the probability that the n-th special number is the
minimal divisor greater than 2, then, indeed, a recursive relationship holds
(where sn is the n-th special number),

πn =
1

sn

(
1−

n−1∑
i=1

πi

)
=

πn−1(sn−1 − 1)

sn
(9)

The last transition comes from,
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1−
n−2∑
i=1

πi = πn−1sn−1

=⇒ 1−
n−1∑
i=1

πi = πn−1sn−1 − πn−1 = πn−1(sn−1 − 1) (10)

Now, all that is left, to reiterate the recursive relationship to obtain,

πn =
(s1 − 1) · (s2 − 1) . . . (sn−1 − 1)

s1 . . . sn
=

1

s1

n−1∏
i=1

si − 1

si
(11)

First of all, quick note, from this, one can conclude, that, πn ≤ 1
sn
, which

has as a direct biproduct,
lim

n→∞
πn = 0 (12)

Now, I shall return to the definition of AL2(N), to get, (where, d(k) repre-
sents the smallest divisor, which is greater than 2 of k)

AL2(N) =

[ N∑
k=1

L2(k)

]
/N =

[ N∑
k=1

k − k

d(k)

]
/N

=

[
N(N + 1)

2

]
/N −

N∑
k=1

k

Nd(k)
=

N + 1

2
− E

[
k

d(k)

]
(13)

The expectation is just a convienient way to rephrase the previous, assuming
that the random variable k is uniformly selected from 1 to N . Thus, I propose
analysing that value,

E
[

k

d(k)

]
=

∞∑
k=1

πkN

2sk
≤ N

∞∑
k=1

1

sk
· 1

2sk
= N

∞∑
k=1

1

2s2k
(14)

One of the methods here, is to immediately write the last expression using
the prime zeta function,

∞∑
k=1

1

2s2k
=

1

32
+

[
P (2)− 1

4

]
/2 ≈ 1

32
+

[
0.45224− 1

4

]
/2 ≈ 0.13237 (15)

Thus, in the end, we have, that,

AL2(N) =
N + 1

2
− E

[
k

d(k)

]
≈ N + 1

2
− 0.13237N ≈ 0.36763N (16)
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However, I have found this result to not be precise enough, this is due to the
rough approximation we make, for the value of πk, it far from accurate, I am
referencing this specific moment in logic,

1

sn

n−1∏
i=1

si − 1

si
≤ 1

sn
(17)

If one accounts for this error (I have not figured out a way here, to get a nice
formula to simplify the last, thus I have simply calculated this with a computer),

∞∑
k=1

πk

sk
=

∞∑
k=1

[
1

sn

n−1∏
i=1

si − 1

si
· 1

sk

]
≈ 0.18959 = C (18)

From, one concludes, that,

AL2(N) =
N + 1

2
− E

[
k

d(k)

]
=

N + 1

2
−N

∞∑
k=1

1

2s2k

≈ N + 1

2
− N

2
· C ≈

(
1− C

2

)
N ≈ 0.405205N (19)

Thus, we have come to quite an accurate formula for AL2(N), which is
AL2(N) ≈ 0.405N , let the constant be c, then, one can conclude, the following,

cN =

[ N∑
k=1

L2(k)

]
/N =⇒ cN2 =

N∑
k=1

L2(k) (20)

c(N − 1) =

[N−1∑
k=1

L2(k)

]
/(N − 1) =⇒ c(N − 1)2 =

N−1∑
k=1

L2(k) (21)

=⇒
N∑

k=1

L2(k)−
N−1∑
k=1

L2(k) = L2(N) = cN2 − c(N − 1)2 = 2cN − c (22)

Thus, we get, that L2(N) ≈ 0.81041N − 0.405205, in other words, with large
values of N , the approximate value is around 0.81041N

3.2 L3(N) Case-wise Analysis

Consider the simplest and most elementary situation where k = 3. Now let one
consider three situation for different possible congruences mod 3.

1. If n ≡ 1 (mod 3), then an example of a 3-partition could be 1, k, 2k (with
the sum exactly n) with a LCM of 2k, where n = 3k+1, consequently we

achieve an upper bound on the value for L3(n) to be 2(n−1)
3 .
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2. If n ≡ 2 (mod 3), analogously consider the example 2, k, 2k, again where
n = 3k + 2. As one can see, indeed the LCM is again 2k, thus again an

upper bound is achieved of 2(n−2)
3 .

3. Finally, if n ≡ 0 (mod 3), then n = 3k, let us again consider the possible
congruences modulo 3 of k. (As you can see the work for now is quite
technical)

• If k ≡ 0 (mod 3), then n = 9t and an example of t, 2t, 6t sets the
upper bound of 2n

3

• If k ≡ 1 (mod 3), then 3, k − 1, 2k − 2 works, due to 2k − 2 ≡ 0
(mod 3)

• If k ≡ 2 (mod 3), then 6, k − 2, 2k − 4 works, due to 2k − 4 ≡ 0
(mod 6) if k ≡ 2 (mod 3)

Thus, indeed, one has established an upper bound on the value of L3(N) to
be 2N

3 . It is important to note this bound is strict only for N large enough so
that the above examples work (the exact number after which the bound starts
working will be discussed a bit later). One can see the established lower and
upper bound for the values of L3(N),

However, this somewhat brute-force approach does not work for larger values
of N , in fact already just to find an upper bound for L4(N) posses a harder
problem than before. Thus, calculating an upper bound for higher values of
K requires a different perspective. In fact it seems the linear upper bound for
L4(N) while close, is not as tight as it was for L3(N).
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Figure 1

I want to note, that the value of L3(N) is already to a large extend analysed,
one already knows from the previous theorems, that 6N

11 ≤ L3(N) ≤ 2N
3 (whilst,

the upper bound is proven is a non-insightful fashion, it does not deminish the
fact, that the bound is proven).

3.3 Remarks on LK(N)

I cannot say much, about the completely generalized concept, except for the fact,
that this problem is quite fundamental, if one thinks about it closer. Again, let
us take a closer look at how can one interpret the value of L2(N). Let us
interpret all partitions of 2-partitions of N , then one can easily come to see,
that this is nothing more, than all the lattice points of a line y = −x+N , thus
if F2(N) ≥ L2(N), this means, that for any line y = −x + N , there exists a
lattice point, which is less or equal to F2(N), this interpretation can be easily
generalized for larger dimensions.
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